

A great tool for teaching fourth grade math...

- These math posters will help you introduce and teach key math concepts to your fourth-grade students.
- Not only will you save TONS of time not having to create your own anchor charts, but you'll also have clear and concise language and examples you can use when teaching these concepts to your students.
- Students love gluing them in their math journals so they can refer back to them during independent practice or when working at home.

TEACHERS LOVE THIS RESOURCE!

Check out what teachers have to say about this resource.

Love, love love these! They are small, but informative and fit very nicely in the math center. They are very well designed - colorful and easy to read.

- Laura B.

I loved these posters during distance learning. It gave my students something to reference when they were working independently at home.
-Amy T.

This has been a life saver for my struggling learners! I have them glue these into their journals and go back to them as they work thru their independent activities.

- Vanessa Shanahan

INCLUDES POSTERS FOR 51 FOURTH GRADE MATH SKILLS

Poster Titles Include:

- Place Value
- Interpreting Place Value
- Representing Numbers
-Representing Decimals
- Comparing \& Ordering Numbers
- Rounding
- Decimals
- Comparing \& Ordering Decimals
- Relating Decimals to Fractions
- Decimals on a Number Line
- Represent a Fraction
- Decomposing Fractions
- Equivalent Fractions
- Comparing Fractions
- Adding and Subtracting Fractions
- Estimating Fractions
- Fractions on a Number Line
- Add and Subtract Whole

Numbers and Decimals

- Multiplying by Multiples of 10
- Finding Products Using Arrays
- Properties of Multiplication
- Standard Algorithm
- Partial Products \& Box Method
- Finding the Quotient
- Standard Algorithm for Long Division
- Compatible Numbers
- Interpret the Remainder
- Strip Diagrams
- Input-Output Tables
- Area
- Perimeter
-Types of Lines
- Lines of Symmetry
- Types of Triangles
-Classify Two-Dimensional Shapes
- Illustrating Angles
- Measuring Angles
- Drawing Angles
- Adjacent Angles
- Measuring Length
- Customary Conversions
- Elapsed Time
- Liquid Volume
- Frequency Table
- Dot Plot
- Stem \& Leaf Plot
- Expenses
- Calculating Profit
- Savings Options
- Budgeting an Allowance
- Understanding Financial Institutions

Includes Digital Versions

I love to provide both print and digital options in my resources. This resource includes a digital version created using Google Slides.

Whether you are teaching in person or virtually, you'll be able to use these math posters as part of your whole group instruction.

You can also share them with students to make it easy for them to reference them during their independent practice.

Includes Multiple Printing Options

This resource includes multiple printing options so you can select the exact style that meets your needs.

You can print the posters in color or in black and white.

You can print the posters in mini size, journal size, or full page

Elapsed Time
Elapsed time is the amount of time that passes between two events.
If you know the start time and the end time of the event then you
can find the elapsed time.
There are several strategies you can use to determine elapsed time.
Make a T-Chart

Make a Number Line
Start time $=1: 24 \mathrm{pm} \quad$ Add together $=3$ hours and 22 minutes End time $=4: 46 \mathrm{pm}$
Elapsed time $=3$ hours and
22 minutes

A LOOK INSIDE...

Representing Numbers
Representing a number simply means you are showing
the place and value of that number.
Standard Form
writing the number using only digits 632
Base IO Models using a model to show
the value of the

Expanded Notation
writing the number to
show the value of each digit
$6 \times 100 \cdot 3 \times 10$ - 2xI

Expanded Form writing the number by adding the value of the digits 600 * 30 * 2
Word Form writing the number using only words
six hundred
thirty two

Comparing \&
 Ordering Numbers
 Al numbers have value. You can compare the value of two whole numbers by using the following symbols:

Greater Than	Less Than	Equal To

$$
\begin{array}{l|l|l}
& & \\
\hline
\end{array}
$$

Follow these steps to compare two numbers. Step 1: Line up the numbers according to place value. 13,453 13,623
Step 2: Compare the numbers in each place starting with Start here the largest.

$\begin{array}{ll}4 \text { is less than } 6 \\ \text { So } \ldots \ldots . . & 13,623\end{array}$
13,453 is less than 13,623
Step 3: Use the symbols to show the relationship between the two numbers
$13,453<13,623$
13,453 is less than 13,623

Finding the Quotient
When you are aivaingyou are trying to find the quotient, which is the same thing as the answer. here are sevt Finding The Quotient Using Arrays You can draw an array to help you find a quotient and remainder:
19+4
Start with 19 tiles.
Put themin rows of 4 :
The number leftoveris
The number leftover is your remainder.
The answer is $19+4=4$ remoinder 3

Finding The Quotient Using Area Models You can draw an area model on grid
paper to help you find the quotient.
$39=3$
Break
$39 \div 3$
Break 39 into two parts $30+9$
Yol

each part.
The answer is $39 \div 3=13$
Finding The Quotient Using Equations
You can break apart division problems into $s m$
find the quotient.
You can break 84 into two numbers that can easily divide by 6
$84 \div 6=(60 \div 6) \cdot(24 \div 6) \quad$ Think: $60 \cdot 24=84$
$84 \div 6=10 \div 4$ $84 \div 6=100 \div 6$
$84 \div 6=10+4$
$8=14$ Think: $60 \cdot 24=$
Think: $60=6=1$
Think: $10 \cdot 4=14$

Equivalent Fractions

Equivalent fractions are fractions that have the same

These models all show equivalent fractions. The same amount is shaded on each rectangle.

Drawing a model can help you identify equivalent fractions, but you can also find equivalent fractions by multiplying or
diviaing

$$
\frac{1}{2} \times \frac{4}{4}=\frac{4}{8}
$$

You can find an equivalent fraction by multiplying the numerator and denominator by the same number.

$\frac{2}{4} \div \frac{2}{2}=\frac{1}{2}$
You can find an equivalent fraction by dividing the numerator and denominator by the same number.

Represent a Fraction

decimals, you can represent fractions in a variety of ways.

Parts of a Fraction \quad Fractions as a Sum Pere are specific terms to name You can represent fractions as
sum of smaller ficictions. The
\qquad model can be represented as
different sums of toctions The top number is called the numerator
The bottom $\frac{4}{4}+\frac{4}{4}+\frac{1}{4}$ or $\frac{3}{4}+\frac{3}{4}+\frac{3}{4}$ The bottom nur
the denominat -The banomininator

Improper Fractions An improper fraction is a fraction
where the numerator is larger than

Mixed Numbers mixed numberis a combination
a whole number and α fraction.
\qquad traction. Each square is divided into Traction. Each square is divided into
fưtris (denominatol) and nine
(numerator) of them are shaded in. The model above can be wilten as
 are two whole squares shaded 0 a
one fourth of another square. one fouth of anothers square.

Lines of Symmetry

A line of symmetry divides a shape into two congruent parts. Congruent means the parts are both the same size and the same shape.

Lines of symmetry can be vertical, horizontal, or diagonal.

Shapes can have different numbers of lines of symmetry.

The number of congruent sides a shape has tells you the number of lines of symmetry a shape has. A square has four congruent sides so it has four lines of symmetry.
0 lines of
l line of
symmetry
symmetry
J
M I

Types of Triangles There are many different types of triangles. Triangles
can be classified by theirangles or by their sides.

Acute Triangle
All three angles are acute (less than 90°).

Right Triangle One of the angles is right angle $\left(90^{\circ}\right)$

Obtuse Triangle One of the angles is an obtuse angle (greater than 90°).

Scalene Triangl No sides are congruent(same size)

A LOOK INSIDE...

Types of Triangles

There are many different types of triangles. Triangles
can be classified by their angles or by theirsides.

Acute Triangle
All three angles are acute Acu angles are ac
(less than 90°).

Right Triangle One of the angles is right angle (90).

Obtuse Triangle Sne of the angles is an obtuse angle (greater

Isosceles Triangle Two sides are congruent wo sides are congruent (same siz

Scalene Triangle No sides are No sides are
congruent(same size)

Drawing Angles

CUSTOMARY CONVERSIONS

same system. You can use this chat to help you make your

Example

If you have a rope that is 72 Inches long and you wanted to
know how many feet that is you would use the following know how many feet that is you would use the following
equation.

72 inches $\div 12=6$ feet

You know that the rope is 6 feet long. If you wanted to conver
that rope into yards you would use the following that rope into yards you would use the following equation. 6 feet $\div 3=2$ yards

You know that 72 inches $=6$ feet $=2$ yards.

Elapsed Time

If you know the start time and the end time of the event then you
can find the elapsed time.
There are several strategies you can use to determine elapsed time.
Make a T-Chart
Start time $=7: 45 \mathrm{am}$
End time $=11: 37 \mathrm{am}$
Elapsed time $=3$ hours and

Make a Z-Chart
Start time $=3: 30 \mathrm{pm}$
End time $=6: 08 \mathrm{pm}$
Elapsed time $=2$ hours and
\qquad minutes and
hous together 2 hours and
38 minutes

Make a Number Line
Start time $=1: 24 \mathrm{pm}$
End time $=4: 46 \mathrm{pm}$
Elapsed time $=3$ hours and
22 minutes \qquad I. $\overbrace{\text { 4.34: }}^{4 \cdot 44}$

Finding Products Using Arrays

$$
\begin{aligned}
& \text { You can use arrays to help you multiply. An array has } \\
& \text { equal rows with equal numbers in each ow It is a wav }
\end{aligned}
$$ equal rows with equal numbers in each row. It is a way to help you visualize the multiplication problem. $\xrightarrow[\substack{\text { This is a row. } \\ \text { Each row has the }}]{\longrightarrow}$

\qquad
$0 \bigcirc \bigcirc \bigcirc \bigcirc O$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc O O$

This iso column.
Each.
column ha
the same
numbero
numberof
circles.
You can find the total of the array different ways.

You can count the circles. 20	You can add up the circles in each row. $5+5+5+5=20$
You can add up the circles in each column.	You can multiply the rows by the columns.
$4+4+4+4+4=20$	$5 \times 4=20$

Input-Output Tables
Input-output tables are sometimes called function tables or pattern
tables. The function or pattern is the rule. The rule helps you tables. The function or pattern is the rule. The rule helps you
understand the relationship between the two columns or rows. If understand the relafionship belween the wo columns or rows. If
you know the rule you can complete any input-output table.

Sometimes input-output cables have a two part tule.
Can you the out what the

When you think you have figured out the rule for the function numbers! Make sure you always double check each set

Hey! Let's be friends!

Cick the icon below to follow me on social media.

Looking for new ideas and easy-to-implement strategies?

Tune in to the Stellar Teacher Podcast each week to hear me share actionable strategies that will help take you to the next level of your teaching career!

Click HERE to listen!
$\lll<$ The stellar teacher company

